論文- 宮岡 礼子 -
表示方法: 表示形式: 表示順:
件数:51件
[2019]
1.ある過剰決定系の解の性質.[2018年度福岡大学微分幾何研究集会報告集,(2019)]宮岡礼子
2.Lagrangian Geometry of the Gauss Images of Isoparametric Hypersurfaces in Spheres.[Proceeding of the workshop "5th Workshop "Complex Geometry and Lie Groups, Firenze,(2019)]R.Miyaoka and Y. Ohnita
[2017]
3.Hamiltonian non-displaceability of the Gauss images of isoprametric hypersurfaces (a survey).[Springer Proceedings in Math. and Stat. ``Hermitian-Grassmannian Submanifolds,(2017)]Reiko Miyaoka
[2016]
4.Errata of ``isoparametric hypersurfaces with (g,m)=(6,2)".[Annals of Math.,183(3),(2016),1057-1071]R. Miyaoka
10.4007/annals.2016.183.3.7
5.Hamiltonian Non-displaceability of Gauss Images of Isoparamatric hypersurfaces.[Bull. Lond. Math. Soc.,48(5),(2016),802-812]H. Iriyeh, H. Ma, R. Miyaoka, Y. Ohnita
10.1112/blms/bdw040
[2015]
6.Moment map description of the Cartan-Munzner polynomials of degree four.[Geometry and Analysis on Manifolds, Progress in Math.,38,(2015),437-447]Reiko Miyaoka
7.Remaks on ”The Dorfmeister-Neher theorem on isoparametric hypersurfaces”.[Osaka J. Math.,52,(2015),373-377]R. Miyaoka
[2014]
8.Stability of complete minimal Lagrangian submanifold and L2 harmonic 1-forms.[Real and complex submanifolds (Proceedings of the satellite conference of ICM),106,(2014),89-95]R. Miyaoka and S. Ueki
[2013]
9.Transnormal functions and transnormal systems.[Proceedings of the 17th International Workshop on Differential Geometry,17,(2013),13-20]Reiko Miyaoka
10.Moment map expression of isoprametric hypersurfaces.[Oberwolfach Reports,21,(2013),1291-1293]Reiko Miyaoka
11.Isoparametric hypersurfaces with (g,m)=(6,2).[Annals of Mathematics,177,(2013),53-110]Reiko Miyaoka
10.4007/annals.2013.177.1.2
12.Moment maps of the spin action and the Cartan-Munzner polynomials of degree four.[Mathematische Annalen,355,(2013),1067-1084]Reiko Miyaoka
10.1007/s00208-012-0819-8
13.Transnormal functions on a Riemannian manifold.[Differential Geometry and its Applications,31,(2013),130-139]Reiko Miyaoka
10.1016/j.difgeo.2012.10.005
14.Moment map of the spin action and Cartan Munzner polynomials.[ASPM,(2013)]Reiko Miyaoka
[2011]
15.Geometry of G2 orbits and isoparametric hypersurfaces.[Nagoya Math. J.,203,(2011),175-189]Reiko Miyaoka
10.1215/00277630-1331899
[2010]
16.Homogeneity of isoparametric hypersurfaces with six principal curvatures.[Progress in Surface Theory, Oberwolfach Report,21/2010,(2010),1279-1281]R.Miyaoka
[2009]
17.The Dorfmeister-Neher theorem on isoparametric hypersurfaces.[Osaka J. of Math.,46(3),(2009),695-715]R. Miyaoka
[2008]
18.The Gauss map of pseudo-algebraic minimal surfaces.[Forum Mathematicum,20,(2008),1055-1069]Y. Kawakami, R. Kobayashi and R. Miyaoka
10.1515/FORUM.2008.047
19.Isoparametric geometry and related fields.[Advanced Studies in Pure Mathematics,51,(2008),305-326]R. Miyaoka
[2006]
20.4つの主曲率をもつ等径超曲面のT. E. Cecil, Q. S. Chi, G. R. Jensen による分類.[数学,58(3),(2006),225-238]宮岡礼子
Page: [1] [2] [3] [next]
戻るこのページのトップへ
copyright(c)2005 Tohoku University