論文- 高木 泉 -
表示方法: 表示形式: 表示順:
件数:28件
[2020]
1.Hysteresis-driven pattern formation in reaction-diffusion-ODE systems.[Discrete and Continuous Dynamical Systems, Series A,40(6),(2020),3595-3627]Alexandra Koethe, Anna Marciniak-Czochra and Izumi Takagi
10.3934/dcds.2020170
[2019]
2.Locator function for concentration points in a spatially heterogeneous semilinear Neumann problem.[Indiana University Mathematics Journal,(2019)]Izumi Takagi and Hiroko Yamamoto
3.Steady states of FitzHugh-Nagumo system with non-diffusive activator and diffusive inhibitor.[Tohoku Mathematical Journal,(2019)]Ying Li, Anna Marciniak-Czochra, Izumi Takagi and Boying Wu
[2017]
4.Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis.[Hiroshima Mathematical Journal,47,(2017),217-247]Ying Li, Anna Marciniak-Czochra, Izumi Takagi, Boying Wu
5.Stable patterns with jump discontinuity in systems with Turing instability and hysteresis.[Discrete and Continuous Dynamical Systems - A,37,(2017),757-800]Steffen Haerting, Anna Marciniak-Czochra and Izumi Takagi
10.3934/dcds.2017032
[2015]
6.Pattern formation in a diffusion-ODE model with hysteresis.[Differential and Integral Equations,28(7-8),(2015),655-694]Anna Marciniak-Czochra, Madoka Nakayama, Izumi Takagi
[2011]
7.On the role of basic production terms in an activator-inhibitor system modeling biological pattern formation.[Funkcialaj Ekvacioj,54,(2011),237-274]Kanako Suzuki, Izumi Takagi
8.Global bifurcation structure on a shadow system with a source term--representaion of all solutions.[Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol II,Suppl,(2011),1344-1350]Takaichi, Hideaki; Takagi, Izumi; Yotsutani, Shoji
[2010]
9.Collapse of patterns and effect of basic production terms in some reaction-diffusion systems.[Mathematical Sciences and Applications. Current Advances in Nonlinear Analysis and Related Topics,32,(2010),163-187]Kanako Suzuki and Izumi Takagi
[2009]
10.Behavior of solutions to an activator-inhibitor system with basic production terms.[Proceedings of the Czech-Japanese Seminar in Applied Mathematics 2008 held at Takachiho/University of Miyazaki, Miyazaki, Japan, September 1-7, 2008,(2009),49-59]Kanako Suzuki, Izumi Takagi
[2008]
11.Representation formula for the critical points of the Tadjbakhsh-Odeh functional and its application.[Japan Journal of Industrial and Applied Mathematics,25,(2008),331-372]Kohtaro Watanabe, Izumi Takagi
[2007]
12.On the role of the source terms in an activator-inhibitor system proposed by Gierer-Meinhardt.[Advanced Studies in Pure Mathematics, Asymptotic Analysis and Singularities,42,(2007),749-766]Kanako Suzuki, Izumi Takagi
13.Global solutions to a one-dimensional nonlinear parabolic system modeling colonial formation by chemotactic bacteria.[Advanced Studies in Pure Mathematics, Asymptotic Analysis and Singularities,47(2),(2007),613-622]Khin Phyu Phyu Htoo, Masayasu Mimura, Izumi Takagi
14.Determination of the limit sets of trajectories of the Gierer-Meinhardt system without diffusion.[Advanced Studies in Pure Mathematics, Asymptotic Analysis and Singularities,47(2),(2007),689-708]Wei-Ming Ni, Kanako Suzuki, Izumi Takagi
[2006]
15.The dynamics of a kinetic activator-inhibitor system.[Jornal of Differential Equations,229,(2006),426-465]Wei-Ming Ni, Kanako Suzuki and Izumi Takagi
[2003]
16.Bifurcating critical points of bending energy under constraints related to the shape of red blood cells.[Calculus of Variations and Partial Differential Equations,16(1),(2003),2003-63-111]Takeyuki Nagasawa and Izumi Takagi
[2001]
17.Stability of least energy patterns of the shadow system for an activator-inhibitor model.[Japan Journal of Industrial and Applied Mathematics,18,(2001),259-272]Wei-Ming Ni, Izumi Takagi, and Eiji Yanagida
18.Method of rotating planes applied to a singularly perturbed Neumann problem.[Calculus of Variations and Partial Differential Equations,13(4),(2001),519-536]Chang-Shou Lin and Izumi Takagi
[2000]
19.Closed surfaces minimizing the bending energy under prescribed area and volume.[Equadiff 99: Proceedings of the International Conference on Differential Equations,Vol 1,(2000),561-563]Takeyuki Nagasawa and Izumi Takagi
[1998]
20.On the location and profile of spike-layer solutions to a singularly perturbed semilinear Dirichlet problem: intermediate solutions.[Duke Mathematical Journal,94(3),(1998),597-618]Wei-Ming Ni, Izumi Takagi, Juncheng Wei
Page: [1] [2] [next]
戻るこのページのトップへ
copyright(c)2005 Tohoku University