著書論文等- 高木 泉 -
表示方法: 表示形式: 表示順:
[]:著書 []:論文 []:総説・解説記事
件数:34件
[2020]
1.[] 代数学 第2巻.[内田老鶴圃,(2020)]浦川肇,高木 泉,藤原毅夫
ISBN978-4-7536-0162-2
2.[] Hysteresis-driven pattern formation in reaction-diffusion-ODE systems.[Discrete and Continuous Dynamical Systems, Series A,40(6),(2020),3595-3627]Alexandra Koethe, Anna Marciniak-Czochra and Izumi Takagi
10.3934/dcds.2020170
[2019]
3.[] 代数学 第1巻.[内田老鶴圃,(2019)]浦川肇,高木泉,藤原毅夫
ISBN978-4-7536-0161-5
4.[] Locator function for concentration points in a spatially heterogeneous semilinear Neumann problem.[Indiana University Mathematics Journal,(2019)]Izumi Takagi and Hiroko Yamamoto
5.[] Steady states of FitzHugh-Nagumo system with non-diffusive activator and diffusive inhibitor.[Tohoku Mathematical Journal,(2019)]Ying Li, Anna Marciniak-Czochra, Izumi Takagi and Boying Wu
[2017]
6.[] Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis.[Hiroshima Mathematical Journal,47,(2017),217-247]Ying Li, Anna Marciniak-Czochra, Izumi Takagi, Boying Wu
7.[] 微分積分学第2巻.[内田老鶴圃,(2017)]浦川肇,高木泉,藤原毅夫
ISBN978-4753601646
8.[] Stable patterns with jump discontinuity in systems with Turing instability and hysteresis.[Discrete and Continuous Dynamical Systems - A,37,(2017),757-800]Steffen Haerting, Anna Marciniak-Czochra and Izumi Takagi
10.3934/dcds.2017032
[2016]
9.[] 微分積分学第1巻.[内田老鶴圃,(2016)]浦川肇,高木泉,藤原毅夫
ISBN978-4-7536-0163-9
[2015]
10.[] Pattern formation in a diffusion-ODE model with hysteresis.[Differential and Integral Equations,28(7-8),(2015),655-694]Anna Marciniak-Czochra, Madoka Nakayama, Izumi Takagi
[2011]
11.[] On the role of basic production terms in an activator-inhibitor system modeling biological pattern formation.[Funkcialaj Ekvacioj,54,(2011),237-274]Kanako Suzuki, Izumi Takagi
12.[] パターン形成の方程式.[サイエンス社 数理科学,49(3), (2011), 67-74]髙木 泉
13.[] Global bifurcation structure on a shadow system with a source term--representaion of all solutions.[Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol II,Suppl,(2011),1344-1350]Takaichi, Hideaki; Takagi, Izumi; Yotsutani, Shoji
[2010]
14.[] Collapse of patterns and effect of basic production terms in some reaction-diffusion systems.[Mathematical Sciences and Applications. Current Advances in Nonlinear Analysis and Related Topics,32,(2010),163-187]Kanako Suzuki and Izumi Takagi
[2009]
15.[] Behavior of solutions to an activator-inhibitor system with basic production terms.[Proceedings of the Czech-Japanese Seminar in Applied Mathematics 2008 held at Takachiho/University of Miyazaki, Miyazaki, Japan, September 1-7, 2008,(2009),49-59]Kanako Suzuki, Izumi Takagi
[2008]
16.[] Representation formula for the critical points of the Tadjbakhsh-Odeh functional and its application.[Japan Journal of Industrial and Applied Mathematics,25,(2008),331-372]Kohtaro Watanabe, Izumi Takagi
[2007]
17.[] On the role of the source terms in an activator-inhibitor system proposed by Gierer-Meinhardt.[Advanced Studies in Pure Mathematics, Asymptotic Analysis and Singularities,42,(2007),749-766]Kanako Suzuki, Izumi Takagi
18.[] Global solutions to a one-dimensional nonlinear parabolic system modeling colonial formation by chemotactic bacteria.[Advanced Studies in Pure Mathematics, Asymptotic Analysis and Singularities,47(2),(2007),613-622]Khin Phyu Phyu Htoo, Masayasu Mimura, Izumi Takagi
19.[] Determination of the limit sets of trajectories of the Gierer-Meinhardt system without diffusion.[Advanced Studies in Pure Mathematics, Asymptotic Analysis and Singularities,47(2),(2007),689-708]Wei-Ming Ni, Kanako Suzuki, Izumi Takagi
[2006]
20.[] The dynamics of a kinetic activator-inhibitor system.[Jornal of Differential Equations,229,(2006),426-465]Wei-Ming Ni, Kanako Suzuki and Izumi Takagi
Page: [1] [2] [next]
戻るこのページのトップへ
copyright(c)2005 Tohoku University