Books, Original Papers & Review Papers- IWABUCHI Tsukasa -
number of results to view: what to display: sort:
[B]:Books [O]:Original Papers [R]:Review Papers
total:29
[2018]
1.[O] Boundedness of spectral multipliers for Schrödinger operators on open sets.[Rev. Mat. Iberoam,34(3),(2018),1277-1322]T. Iwabuchi, T. Matsuyama, K. Taniguchi
2.[O] Besov spaces on open sets.[Bull. Sci. Math.,152,(2018),93-149]T. Iwabuchi, T. Matsuyama, K. Taniguchi
3.[O] The semigroup generated by the Dirichlet Laplacian of fractional order.[Anal. PDE,11(3),(2018),683-703]Tsukasa Iwabuchi
4.[O] Derivatives on function spaces generated by the Dirichlet Laplacian and the Neumann Laplacian in one dimension.[Commun. Math. Anal.,21,(2018),1-8]T. Iwabuchi
[2017]
5.[O] Existence of mild solutions for a Hamilton-Jacobi equation with critical fractional viscosity in the Besov spaces.[JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES,107(4),(2017),464-489]Tsukasa Iwabuchi, Tatsuki Kawakami
10.1016/j.matpur.2016.07.007
http://gateway.isiknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=TohokuUniv&SrcApp=TohokuUniv&DestLinkType=FullRecord&KeyUT=WOS:000399854100005&DestApp=WOS
6.[O] Global solutions for the incompressible rotating stably stratified fluids.[MATHEMATISCHE NACHRICHTEN,290(4),(2017),613-631]Tsukasa Iwabuchi, Alex Mahalov, Ryo Takada
10.1002/mana.201500385
http://gateway.isiknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=TohokuUniv&SrcApp=TohokuUniv&DestLinkType=FullRecord&KeyUT=WOS:000397770500009&DestApp=WOS
7.[O] On the existence time of local solutions for critical semilinear Schr¥"odinger equations in Sobolev spaces.[Nonlinear Anal. Real World Appl.,33,(2017),168-180]Tsukasa Iwabuchi, Makoto Nakamura
[2016]
8.[O] Ill-posedness for a system of quadratic nonlinear Schr¥"odinger equations in two dimensions.[J. Funct. Anal.,271(1),(2016),136-163]Tsukasa Iwabuchi, Takayoshi Ogawa, Kota Uriya
10.1016/j.jfa.2016.04.017
9.[O] Ill-posedness issue for the drift diffusion system in the homogeneous Besov spaces.[Osaka J. Math.,53(4),(2016),919-939]Tsukasa Iwabuchi, Takayoshi Ogawa
[2015]
10.[O] Dispersive effect of the Coriolis force and the local well-posedness for the Navier-Stokes equations in the rotational framework.[Funkcial. Ekvac.,58(3),(2015),365-385]Tsukasa Iwabuchi, Ryo Takada
10.1619/fesi.58.365
11.[O] Ill-posedness for the quadratic nonlinear Schr\"odinger equation with nonlinearity $|u|^2$.[Commun. Pure Appl. Anal.,14(4),(2015),1395-1405]Tsukasa Iwabuchi, Kota Uriya
10.3934/cpaa.2015.14.1395
12.[O] Global solutions for the critical Burgers equation in the Besov spaces and the large time behavior.[Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire,32(3),(2015),687-713]Tsukasa Iwabuchi
10.1016/j.anihpc.2014.03.002
13.[O] Ill-posedness for nonlinear Schr\"{o}dinger equations with quadratic non-linearity in low space dimensions.[Trans. Amer. Math. Soc.,367(4),(2015),2613-2630]Tsukasa Iwabuchi, Takayoshi Ogawa
10.1090/S0002-9947-2014-06000-5
[2014]
14.[R] Global well-posedness and the ill-posedness for the Navier-Stokes equations with the Coriolis force in the function spaces of Besov type.[Journal of Functional Analysis,267(5), (2014), 1321-1337]T. Iwabuchi, R. Takada
10.1016/j.jfa.2014.05.022
15.[R] Local solvability of the Keller-Segel system with Cauchy data in the Besov spaces.[Mathematical Methods in the Applied Sciences,37(9), (2014), 1273--1277-]T. Iwabuchi
10.1002/mma.2883
[2013]
16.[R] Small solutions for nonlinear heat equations, the Navier-Stokes equations and the Keller-Segel system in Besov and Triebel-Lizorkin spaces.[Advances in Differential Equations,18(7-8), (2013), 687--736-]T. Iwabuchi, M. Nakamura
17.[R] Global solutions for the Navier-Stokes equations in the rotational framework.[Mathematische Annalen,357(2), (2013), 727--741-]T. Iwabuchi, R. Takada
10.1007/s00208-013-0923-4
[2012]
18.[R] Time periodic solutions to the Navier–Stokes equations in the rotational framework.[Journal of Evolution Equations,12(4), (2012), 985-1000]T. Iwabuchi, R. Takada
10.1007/s00028-012-0165-z
[2011]
19.[R] Global and almost global solutions for the Navier-Stokes equations in Besov spaces and Triebel-Lizorkin spaces.[The 4th Japanese-German International Workshop on Mathematical Fluid Dynamics, (2011), p.8-]T. Iwabuchi, M. Nakamura
20.[R] Global and almost global solutions for some nonlinear parabolic equations in Besov spaces and Triebel-Lizorkin spaces.[The 4th MSJ-SI Nonlinear Dynamics in Partial Differential Equations, (2011), 212-213]T. Iwabuchi, M. Nakamura
Page: [1] [2] [next]
BackTop
copyright(c)2005 Tohoku University